17.1 The Shooting Method 749

17.1 The Shooting Method

In this section we discuss “pure” shooting, where the integration proceeds from
x1 to x2, and we try to match boundary conditions at the end of the integration. In
the next section, we describe shooting to an intermediate fitting point, where the
solution to the equations and boundary conditions is found by launching “shots”
from both sides of the interval and trying to match continuity conditions at some £
intermediate point.

Our implementation of the shooting method exactly implements multidimen-
sional, globally convergent Newton-Raphs@8.¢). It seeks to zera > functions
of no variables. The functions are obtained by integrat\glifferential equations
from z; to z». Let us see how this works:

At the starting pointz; there areN starting valueg; to be specified, but
subject tan; conditions. Therefore there amg = N — n; freely specifiable starting
values. Let us imagine that these freely specifiable values are the components of
vectorV that lives in a vector space of dimension. Then you, the user, knowing
the functional form of the boundary conditions (17.0.2), can write a subroutine that
generates a complete setMfstarting valuey, satisfying the boundary conditions
atxy, from an arbitrary vector value &f in which there are no restrictions on the
component values. In other words, (17.0.2) converts to a prescription

Jurmmay/:dny

‘(Ajuo esusWY YUON) £Zi/a8/8-008-T I[e9 10 Wod

yl(gcl):yl(gcl,Vl,,Vnz) Z:1,,N (171])

Below, the subroutine that implements (17.1.1) will be calledd.

Notice that the components ®f might be exactly the values of certain “free”
components ofy, with the other components of determined by the boundary
conditions. Alternatively, the components\fmight parametrize the solutions that
satisfy the starting boundary conditions in some other convenient way. Boundary
conditions often impose algebraic relations amongjgtheather than specific values
for each of them. Using some auxiliary set of parameters often makes it easier t
“solve” the boundary relations for a consistent seyygé. It makes no difference
which way you go, as long as your vector spacd/&f generates (through 17.1.1)
all allowed starting vectory.

Given a particulaW, a particulaly(x 1) is thus generated. It can then be turned
into ay(z2) by integrating the ODEs t@, as an initial value problem (e.g., using
Chapter 16'sodeint). Now, atz,, let us define aliscrepancy vector F, also of
dimensionn,, whose components measure how far we are from satisfying the
boundary conditions at, (17.0.3). Simplest of all is just to use the right-hand
sides of (17.0.3),

213841p O] |leWa puss Io

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

‘(eauBWY YUON 3pISINo) ﬁJoeﬁpqueo@/Qaslsn
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

Fk:BQk(fEQ,y) k’:l,...,ng (1713

As in the case oV, however, you can use any other convenient parametrization,
as long as your space &fs spans the space of possible discrepancies from the
desired boundary conditions, with all component$-aqual to zero if and only if

the boundary conditions aty are satisfied. Below, you will be asked to supply a
user-written subroutingcore which uses (17.0.3) to convert &tvector of ending
valuesy(z2) into anns-vector of discrepancies.

750 Chapter 17. Two Point Boundary Value Problems

Now, as far as Newton-Raphson is concerned, we are nearly in business. We

want to find a vector value o¥ that zeros the vector value & We do this

by invoking the globally convergent Newton’s method implemented in the routine
newt oOf §9.7. Recall that the heart of Newton’s method involves solving the set

of ny linear equations

J-oV=-F (17.1.3
and then adding the correction back,
vrew — yeld o5y (17.1.4
In (17.1.3), the Jacobian matrikhas components given by
OF;
= — 17.1.
J. v, (17.1.5

It is not feasible to compute these partial derivatives analytically. Rather,

requires aseparate integration of theV ODEs, followed by the evaluation of
oF; Fi(Vi,... . Vi + AV, ..) = Fi(Vi,..., V.0
ov; AV

(17.1.9

This is done automatically for you in the routingjac that comes witlewt. The
only input tonewt that you have to provide is the routid@ncv that calculate$
by integrating the ODEs. Here is the appropriate routine:

SUBRQOUTI NE shoot (n2, v, f) is named "funcv" for use with "newt"

SUBROUTINE funcv(n2,v,f)

INTEGER n2,nvar,kmax,kount,KMAXX,NMAX

REAL f(n2),v(n2),x1,x2,dxsav,xp,yp,EPS

PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX coupled ODEs.

COMMON /caller/ x1,x2,nvar

COMMON /path/ kmax,kount,dxsav,xp(KMAXX) ,yp(NMAX,KMAXX)

USES deri vs, | oad, odei nt, rkqgs, score
Routine for use with newt to solve a two point boundary value problem for nvar coupled
ODEs by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are generated
from the n2 input coefficients v(1:n2), using the user-supplied routine 1oad. The routine
integrates the ODEs to x2 using the Runge-Kutta method with tolerance EPS, initial stepsize
h1, and minimum stepsize hmin. At x2 it calls the user-supplied subroutine score to
evaluate the n2 functions f (1:1n2) that ought to be zero to satisfy the boundary conditions
at x2. The functions f are returned on output. newt uses a globally convergent Newton's
method to adjust the values of v until the functions f are zero. The user-supplied subroutine
derivs(x,y,dydx) supplies derivative information to the ODE integrator (see Chapter
16). The common block caller receives its values from the main program so that funcv
can have the syntax required by newt. The common block path is included for compatibility
with odeint.

INTEGER nbad,nok

REAL hi1,hmin,y(NMAX)

EXTERNAL derivs,rkgs

kmax=0

hi=(x2-x1)/100.

hmin=0.

call load(x1,v,y)

call odeint(y,nvar,x1,x2,EPS,hl1,hmin,nok,nbad,derivs,rkqs)

call score(x2,y,f)

return

END

-008-T |29 10 WO Ju*mmm//:dny

each

1218

‘(eauBWY YUON apisino) Bio abpuqued@AIasisnoloalip 0] |lewa puas Jo ‘(Ajuo eauawy YUOoN) €2
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

17.2 Shooting to a Fitting Point 751

For some problems the initial stepsizd” might depend sensitively upon the
initial conditions. It is straightforward to alt@rad to include a suggested stepsize
h1 as another returned argument and feed itdgac via a common block.

A complete cycle of the shooting method thus requitgst 1 integrations of
the N coupled ODEs: one integration to evaluate the current degree of mismatch,
andn, for the partial derivatives. Each new cycle requires a new roundsof 1
integrations. This illustrates the enormous extra effort involved in solving two point 5§
boundary value problems compared with initial value problems.

If the differential equations alénear, then only one complete cycle is required,
since (17.1.3)-(17.1.4) should take us right to the solution. A second round can b
useful, however, in mopping up some (never all) of the roundoff error.

As given hereghoot uses the quality controlled Runge-Kutta method18.2
to integrate the ODEs, but any of the other methods of Chapter 16 could just a
well be used.

You, the user, must supplhoot with: (i) a subroutindoad (x1,v,y) which
returns then-vectory (1:n) (satisfying the starting boundary conditions, of course),
given the freely specifiable variables o{1:n2) at the initial pointx1; (ii) a
subroutinescore (x2,y,f) which returns the discrepancy vectb¢1:n2) of the
ending boundary conditions, given the vecydrl:n) at the endpoink2; (iii) a
starting vectorv (1:n2); (iv) a subroutinederivs for the ODE integration; and
other obvious parameters as described in the header comment above.

In §17.4 we give a sample program illustrating how to sBeot.

CITED REFERENCES AND FURTHER READING:

Acton, ES. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

17.2 Shooting to a Fitting Point

) 610°8BpLqUIRI @ AIBSISN1084IP 0} [fewd puas Jo ‘(Ajuo eouswy YUON) gzn—ag—oog—‘f’”eo 10 LuofPJu‘MMN\// dny

The shooting method describedgh?.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for ver
wrong starting conditions, an initial solution can't even get fromto x5 without
encountering some incalculable, or catastrophic, result. For example, the argume
of a square root might go negative, causing the numerical code to crash. Simpl&,
shooting would be stymied.

A different, but related, case is where the endpoints are both singular pomts
of the set of ODEs. One frequently needs to use special methods to integrate near
the singular points, analytic asymptotic expansions, for example. In such cases it is
feasible to integrate in the directi@way from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usually not feasible to integrate
a singular point, if only because one has not usually expended the same analytic

pISRO

(e BB ULOND

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

